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APPLICATION OF A DOUBLE LINEAR DAMAGE RULE TO CUMULATIVE FATIGUE 

I by S. S. Manson, J. C. F'reche, and C. R .  Ensign 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

SYNOPSIS 

The va l id i ty  of a previously proposed method of predicting cumulative 

cn 
In 
In 
T vestigated.  This method included simplified formulas fo r  determining the  w 

fa t igue damage based upon the concept of a double l i nea r  damage rule i s  in-  

crack i n i t i a t i o n  and propagation stages, and indicated t h a t  each of these 

stages could be represented by a l inear  damage ru le .  

provides a c r i t i c a l  evaluation of the e a r l i e r  proposal, fur ther  i l luminates 

The present study 

the pr inciples  underlying cumulative fat igue damage, and suggests a modifi- 

cation of the or ig ina l  proposal. 

Data were obtained 'In two s t r e s s  l e v e l  t e s t s  with maraged 300 CVM, 

and SAE 4130 s t e e l s  i n  ro ta t ing  bending. 

ducted i n  axial reversed s t r a i n  cycling with maraged 300 CVM s t ee l .  

Two s t r a i n  l e v e l  t e s t s  were con- 

The i n -  

vest igat ion showed t h a t  i n  most cases the double l i nea r  damage ru l e  when used 

i n  conjunction with or ig ina l ly  proposed equations for  determining crack i n i t i -  

a t i on  and propagation predicted fatigue l i f e  with greater  or equal accuracy 

, than the  conventional l inear  damage ru le .  An a l te rna te  viewpoint of the 
, 

double l i nea r  damage ru l e  i s  suggested which may have value i n  the prediction 

of fa t igue  l i f e  under complex loading spectra.  The r e s u l t s  obtained t o  date 

are,  however, l imited,  and the method must be regarded as ten ta t ive  u n t i l  

I further ver i f ica t ion  i s  obtained. 

X-52226 
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ODUCTION 

The subject of cumulative fatigue damage i s  extremely complex and 

various theories  have been proposed (refs .  1 t o  10) t o  predict  fa t igue 

l i f e  i n  advance of service.  

the l i nea r  damage rule commonly referred t o  as the Miner (ref. 7)  rule. 

It i s  well known t h a t  the l i nea r  damage ru le ,  which indicates t ha t  a sum- 

mation of cycle r a t i o s  i s  equal t o  unity, i s  not completely accurate; how- 

ever, because of i ts  simplicity and because it has been found t o  be i n  

reasonable agreement with experimental data  for  cer ta in  cases it is  almost 

always used i n  design. 

rule i n  p rac t i ca l  design it is important t h a t  much of the simplicity of the 

l i n e a r  damage rule be retained. 

herein, r e t a ins  much of t h i s  simplicity and a t  the same time attempts t o  

overcome some of the l imi ta t ions  inherent i n  the conventional l i nea r  ru le .  . 

The most widely known and used procedure is 

If a new method is  t o  replace the l inear  damage 

The double l i n e a r  damage rule, considered 

One of the  l imi ta t ions  of the l inear  damage rule is  t h a t  it does not 

For example, i n  a two- take i n t o  account the  e f fec t  of order of loading. 

s t r e s s  l e v e l  fa t igue test  i n  which the high load is  followed by a low load, 

the  cycle summation i s  l e s s  than unity, whereas a low load followed by a 

high load produces a cycle summation grea te r  than unity.  

res idua l  stress is  a l so  not properly accounted fo r  by the conventional l inear  

damage rule, nor does it take i n t o  account cycle r a t i o s  applied below the 

i n i t i a l  fa t igue l i m i t  of the material. 

f a t igue  l i m i t ,  cycle r a t i o s  of s t resses  applied below the  i n i t i a l  fa t igue 

l i m i t  should be accounted for  (ref. 10). 

present  i n  some strain-aging materials ( r e f .  11) i n  which the appropriate 

sequence of loading may progressively r a i s e  the fat igue l i m i t  a r e  not ac- 

counted for  by the  l i nea r  damage rule. 

The e f f ec t  of 

Since pr ior  loading can reduce the 

In  addition, "coaxing" e f f ec t s  

Various methods have been proposed 
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as  a l te rna t ives  t o  the l i nea r  damage rule .  

ciencies and many introduce additional complexities which e i the r  preclude 

or make t h e i r  use extremely d i f f i c u l t  i n  p rac t i ca l  design problems. 

None overcomes a l l  of the def i -  . 

The poss ib i l i t y  of improving the predictions of a l i nea r  damage ru l e  

by breaking it up in to  two phases, 

a t  on and a l i nea r  damage r u l e  for crack propagation, was first suggested 

by Grover i n  reference 12 .  No ra t iona l  basis  fo r  t h i s  approach w a s  indi-  

cated, nor were def in i te  expressions provided for  separating out the two 

phases. One of the authors of t h i s  paper considered these aspects i n  

greater  d e t a i l  i n  reference 13. 

of two important phases, one fo r  i n i t i a t i n g  a crack and one for  propagating 

a crack, and a l i nea r  damage ru l e  was applied t o  each of these phases. 

double l i nea r  damage ru l e  was  intended t o  correct the deficiencies associated 

with order of loading; the other l imitat ions c i ted  above are not d i r ec t ly  

taken i n t o  account. Simplified formulas derived from l imited data fo r  deter-  

mining the  crack i n i t i a t i o n  and propagation stages were ten ta t ive ly  presented. 

a l i nea r  damage ru l e  for  crack i n i t i -  

Total l i f e  was considered as consisting 

This 

The present study was conducted t o  provide a c r i t i c a l  evaluation of the 

proposal of reference 13, specif ical ly  the analyt ical  expressions for  sepa- 

r a t i n g  out the two phases. Additional data were obtained i n  two s t r e s s  l eve l  

tests i n  ro ta t ing  bending and two s t r a i n  l eve l  t e s t s  i n  ax ia l  reversed s t r a i n  

cycling. 

Fatigue l i f e  predictions by the  double l i nea r  damage ru l e  and the  conven- 

t i o n a l  l inear  damage ru le  a re  compared with experimental data. 

ins tead  of using the analyt ical  expression given i n  reference 13 t o  represent 

the  crack propagation stage i n  the application of the double l i nea r  damage 

rule as or ig ina l ly  proposed, a more generalized expression i s  suggested which 

involves the separation of the fatigue process i n t o  two experimentally deter-  

The materials investigated were maraged 300 CVM and SAE 4130 s t ee l s .  

In  addition, 
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mined phases. These are not necessarily the  physical processes of crack 

i q t i a t i o n  and propagation. 

CONCEPT OF THE DOUBLE LINEAR DAMAGE RULE 

Analytical Application 

In reference 13 it was proposed tha t  the crack propagation period (AN)f 

can both be expressed i n  terms of t o t a l  fa t igue and crack i n i t i a t i o n  No 

l i f e  Nf by the following equations 

(AN)f = P N p  

and 

No = Nf - (AN), = Nf - P G m 6  (2) 

where the  coeff ic ient  P = 14. The experimental basis  for  the select ion 

of t h i s  value of coeff ic ient  is given i n  references 13 and 14 and will a l s o  

be fur ther  desc r ibed la t e r  i n  the text .  The equations expressing cumulative 

fat igue damage i n  terms of the double l inear damage ru le  as  proposed i n  r e f -  

erence 13 are:  

For the  crack i n i t i a t i o n  phase 

(3) 

where Nf > 730 cycles, No = Nf - 14 $ '6  

where Nf C 730 cycles, No 0 

If any pas t  of the loading spectrum includes a condition where 

an e f f ec t ive  crack i s  presumed t o  i n i t i a t e  upon application of t h a t  first load- 

Nf C 730 cycles, 

ing cycle. 

For the crack propagation phase, the  expression i s  

when Nf > 730 cycles, (AN), = 14 qm6 
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when Nf < 730 cycles, (m), = Nf 

where 

No = cycl ic  l i f e  t o  i n i t i a t e  an e f fec t ive  crack a t  a par t icu lar  s t r a i n  

or  s t r e s s  l e v e l  

(AN), = cycl ic  l i f e  t o  propagate a crack from i n i t i a t i o n  t o  f a i l u r e  a t  a 

par t icu lar  s t r a i n  or s t r e s s  l eve l  

Nf = cyclic l i f e  t o  f a i lu re  of specimen 

n = number of cycles applied a t  a par t icular  s t r a i n  or s t r e s s  l eve l  

An example of the manner of applying these equations for  a simple two s t r e s s  

l e v e l  loading case is  given i n  appendix A. 

t i on  r e l a t i n g  crack i n i t i a t i o n  and propagation t o  t o t a l  fa t igue l i f e  is  pre- 

sented i n  reference 14. 

derived on the basis of data obtained with 1/4 inch diameter specimens of 

notch duct i le  materials and have thus far been shown t o  be va l id  only fo r  

t h i s  s i z e  specimen ( r e f .  1 4 ) .  O f  course, most materials would be notch duc- 

t i l e  fo r  such a s m a l l  specimen s ize .  This aspect is  discussed more f u l l y  i n  

reference 13. 

Further discussion of the equa- 

It should be emphasized that these equations were 

By comparison the conventional l i nea r  damage rule i s  expressed as 

Equation (5) s t a t e s  t ha t  a s ingle  summation of cycle r a t i o s  applied a t  d i f f e r -  

ent  s t r e s s  or s t r a i n  leve ls  i s  equal t o  unity. 

Graphical Representation of Double Linear Damage Rule 

Applied t o  Two Stress Level Fatigue Test 

Figure 1 i l l u s t r a t e s  the graphical representation of the double l i nea r  

damage ru l e  p lo t ted  i n  terms of the remaining cycle 

second s t r e s s  l eve l  against  the cycle r a t io s ,  nl/Nf,l, applied a t  an i n i t i a l  

r a t io s ,  nZ/Nf,2, a t  a 
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s t r e s s  level .  Also shown is  a dashed 45' l i n e  which represents the  con- 

ventional l i n e a r  damage ru le .  The figure i s  i l l u s t r a t i v e  of the case i n  

which the prestress  condition is  the high s t r e s s  and t h i s  i s  followed by 

operation t o  f a i lu re  a t  a lower stress. The posi t ion of l i nes  AB and BC 

would be located on the  other s ide of the 45' l i n e  fo r  the condition of 

low prestress  followed by operation t o  f a i l u r e  a t  a high s t r e s s .  

t o  f igure 1, according t o  the  double l inear  damage rule ,  i f  the cycle r a t i o s  

applied (nl/Nf,l) are l e s s  than the number required t o  i n i t i a t e  an e f fec t ive  

crack a t  a par t icu lar  s t r e s s  level,  then the remaining predicted cycl ic  l i f e  

r a t i o  (%/Nf ) would l i e  along AB. 

assumption of a l i nea r  damage ru l e  for crack i n i t i a t i o n .  

the  cycle r a t i o  applied a t  the first s t r e s s  l e v e l  which i s  suf f ic ien t  t o  i n i -  

t i a t e  an e f fec t ive  crack, so t h a t  upon changing t o  the second s t r e s s  l eve l  

the remaining cycle r a t i o  a t  t h a t  s t r e s s  l eve l  i s  exactly equal t o  the t o t a l  

propagation stage. 

Referring 

The l i n e a r i t y  of AB is  implici t  i n  the 
92 

Point B represents 

The coordinates of this point are designated as 

No,l/Nf,l, and AN2/Nf,2' Beyond th i s  i n i t i a l  cycle r a t i o  No,l/Nf,l, the  

f irst  applied cycle r a t i o  i s  more than t h a t  required t o  i n i t i a t e  an effec- 

t i v e  crack, and the crack propagation phase i s  entered. 

by the l i n e  BC which is  a l so  s t ra ight  re f lec t ing  the second assumed l inear  

r e l a t ion .  Thus, 

i n  two-step t e s t s  i n  which a s ingle  s t r e s s  l e v e l  was applied for  a given 

cycle r a t i o  and the remainder of the l i f e  taken up a t  a second s t r e s s  level ,  

two s t r a i g h t  l i nes  positioned as shown would be expected. It should a l s o  be 

emphasized tha t  point B i s  significant since it permits determination of both 

the  e f f ec t ive  crack i n i t i a t i o n  and propagation periods for both s t r e s s  levels  

used i n  the t e s t .  

This is  represented 

The remaining cycl ic  l i f e  r a t i o  then l i e s  along l i n e  BC. 

A f i n a l  point should be made with respect t o  the graphical application 
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of the rlouble l i nea r  damage ru le .  

since points A a d  C are fixed, ideal ly  only two t e s t s  are required t o  

es tab l i sh  the posit ions of these l ines  and consequently the point B. 

only requirement for select ing these t e s t s  is  t h a t  i n  one t e s t  the cycle 

r a t i o  applied a t  the i n i t i a l  s t r e s s  l eve l  should be r e l a t ive ly  large, and 

for  the other t e s t  it should be re la t ive ly  small, i n  order t o  insure t h a t  

the remaking cycle r a t i o s  n2/l!f,2 do 3ot  both f a l l  on the same s t r a igh t  

l i ne ,  e i ther  As or  BC. 

simple fashion i s  apparent i n  the i l l u s t r a t i v e  examples of appendices B 

and C. 

Since l i n e s  AB and BC a re  s t r a igh t  and 

The 

The s ignif icmce of obtaining point B i n  th i s  

XXPERl34EPIA PROCEDURE 

Materials 

Two s t ee l s ,  SAE 4130 arid maraged 300 CVM were investigated. Their 

compositions, heat treatments and hardnesses are  l i s t e d  i n  tab le  I and t h e i r  

t e n s i l e  properties i n  tab le  11. Two different  types of t e s t  specimens were 

used t o  accommoclate the R.  E. Moore and Krouse ro ta t ing  bending t e s t  machines. 

A t h i r d  type of specimen was used fcr ax ia l  s t r a i n  cycling tests. 

specimen ty-pes are  shown i n  figure 2 .  

machined a f t e r  heat treatment. 

p r io r  t o  aging an3 a f t e r  aging,finish ground t o  remove the f i n a l  0.015 inch 

from t.he t e s t  2ect.ior. In addition all rotatirig bending specimens were 

machine polishe2 w i t h  abrasive cloth of three g r i t  s izes  (320, 400, and 500). 

After f i n a l  polishing the specimzEze were mbjected t o  a microscopic examina- 

t i o n  a t  23X. 

All three 

"he 413C s t e e l  t e s t  specimens were 

The maraged 320 CW specimens were machined 

Tes t s  

Specimens were subjectei: t o  m t a t i n g  bending i n  modified 

R .  R.  k o r e  arid Krouse ro ta t ing  beam fat igue machines and t o  ax ia l  reversed 
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s t r a i n  cycling i n  hydraulically actuated axial fa t igue machines. 

rotat ing bending t e s t s  a ro ta t iona l  speed of 5000 rpm was employed a t  t h e  

lower stress leve ls .  In  order t o  avoid the detrimental e f f ec t  of severe 

heat accumulation due t o  hysteresis , rotat ional  speeds as  low as 100 rpm 

were employed a t  the higher s t resses ,  and j e t s  of cooling a i r  were directed 

a t  the specimens. 

cator reading was permitted upon ins t a l l a t ion  i n t o  the fat igue machines. 

Additional de t a i l s  regarding the rotat ing bending t e s t  procedure a re  given 

i n  r e f s .9a rd10 .  

Details of the t e s t  procedure are given i n  reference 15. 

I n  the  

A specimen runout no greater  than 0.001 inch fu l l  indi-  

Axial fa t igue t e s t s  were run a t  20 cycles per minute. 

The fat igue curves fo r  each material were obtained by f a i r ing  the  best  

v i sua l  f i t  curves t h r o g h  the median data points obtained a t  each s t r e s s  or 

s t r a i n  range leve l .  

m a x i m u m  of 25 t o  a minimum of 2 .  

were prestressed a t  a s ingle  s t r e s s  ( i n  ro ta t ing  bending t e s t s )  t o  the  de- 

s i r e d  percentage of material  l i f e  as determined from the fat igue curves of  the  

o r ig ina l  material  and t o  a single s t r a in  range ( a x i a l  fa t igue t e s t s )  as deter-  

mined from s t r a i n  range-life curves o f  the  or ig ina l  material. The speci- 

mens were then run t o  f a i l u r e  a t  various s t r e s s  (or  s t r a i n  range) levels .  

The spec i f ic  conditions a re  indicated on the f igures  t h a t  describe the r e -  

sults of these tes ts .  

The number o f  data points a t  each l eve l  varied f’rom a 

In conducting the investigation specimens 

RESUI;TS m CISCUSSION 

Cornparisan of m e r i m e n t a l  and Predicted Fatigue Life by Originally 

Prop~sed  Double Lizear Damage Rule and Conventional 

Linear Damage R u l e  

Figure 3 shows the r e su l t s  reported previously i n  reference 13 for  

maraged 300 CVM s t e e l  whizh were obtained from ro ta t ing  bending t e s t s .  The 
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s t r e s s  leve ls  were s o  chosen t h a t  l i f e  a t  the i n i t i a l  s t r e s s  was approxi- 

mately 1000 cycles and a t  the  second s t r e s s  500,000 cycles. Fkperimental 

I 

~ 

data a re  shown by the c i r c l e s .  

havior by the double l i nea r  damage ru le  using d i f fe ren t  values of the co- 

e f f i c i e n t  i n  equation (1). 

dicted behavior was represented by the l i n e  ABG; f o r  a coeff ic ient  of 1 2  

The so l id  l i nes  represent predicted be- 

For a value of coeff ic ient  equal t o  14 the pre- 

it was ACG, e tc .  If a l i nea r  damage ru le  applied fo r  the  t o t a l  l i f e  values, 

the  behavior would be t h a t  shown by the dashed l i n e  AG. A reasonable agree- 

ment with the experimental data was obtained for  EL coeff ic ient  of 14. Since 

these data represent only one material and one combination of high and low 

stress equation (1) was only. t en ta t ive ly  proposed ( r e f .  13) as being repre- 

sen ta t ive  of cumulative fat igue damage behavior. 

In  extending t h i s  approach many additional tests were conducted with 

the same and with other materials i n  ro ta t ing  bending and axial reversed 

s t r a i n  cycling. Figure 4 shows the fatigue curves of these materials, 

maraged 300 CVM, and SAE 4130 s t ee l ,  hard and s o f t .  Since both Krouse and 

R.  R. Moore machices were used for  the 300 CVM t e s t s  the fa t igue  curves.ob- 

ta ined w i t h  each machine are shown ( f ig .  4 (a ) ) .  

incident.  

"he curves are  largely co- 

Figure 4(b) shows the fatigue curve f o r  maraged 300 CVM s t e e l  ob- 

ta ined i n  ax ia l  reversed s t r a i n  _cycling. 

Predictions of fa t igue behavior by the double l i nea r  damage ru l e  (using 

the  expression 14 N:'6 

t he  conventional l i nea r  damage rule  a re  compared with experimental data i n  

f igures  5 and 6. Different combinations of loading corresponding t o  

as representing the crack propagation stage) and 

d i f f e ren t  l i f e  leve ls  were chosen. 

ro t a t ing  bending t e s t s  for  maraged 300 CVM s t e e l  designed t o  give r e l a t ive ly  

Figure'5(a) presents the r e su l t s  from 

low fat igue l i v e s  of 1280, 1870, 2050, and 2350 cycles a t  the i n i t i a l  s t r e s s  
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leve l .  The loads a t  the second s t r e s s  l eve l  were chosen t o  give l i v e s  up 

t o  940 000 cycles. Generally the greater the difference between 

the i n i t i a l  and f i n a l  l i f e  l e v e l  ( i . e . ,  i n i t i a l  and f i n a l  s t r e s s  applied) 

the greater  the  deviation between the  experimental data and the  predicted 

behavior by the conventional l i nea r  damage rule shown by the 45' dashed 

l ine;  also, the steeper is  the first (corresponding t o  l i n e  AB, f i g .  1) of 

the  two so l id  l i n e s  which predict  fatigue behavior by the double l i n e a r  

damage ru le .  

l i n e a r  damage ru l e  and experimental data i s  good fo r  these t e s t  conditions. 

This might be expected since theh ighe r s t r e s s  l eve l  as  w e l l  as some of the  

lower s t r e s s  leve ls  are generally of the  same order as  those selected 

or ig ina l ly  for  determining equation (1) for  t h i s  sane material  i n  r e fe r -  

ence 13. 

Agreement between predicted fat igue behavior by the double 

Figure 5(b) deals with the same material  but considers other combina- 

t ions  of t e s t  conditions i n  which the i n i t i a l  l i f e  l eve l  i s  r e l a t ive ly  

high. 

data and predicted fat igue behavior by thedouble l inear  damage ru l e  as  

o r ig ina l ly  proposedoccur when both the i n i t i a l  and f i n a l  l i f e  leve ls  are 

high. 

almost t he  same fat igue behavior a s  the conventional l i n e a r  damage ru l e  i n  

these cases because the crack propagation period as  determined from equa- 

t i o n  (1) would be r e l a t ive ly  small. 

t i o n  (1) for  values of 

conditions which are  considered i n  figure 5(b) .  

appreciably lower values of remaining cycle r a t i o  , 
pected by e i the r  ru le .  

Figure 5(c)  i l l u s t r a t e s  the r e su l t s  obtained under conditions of axial. 

It i s  apparent t ha t  the greatest  discrepancies between experimental 

It would be expected that t h i s  double l i n e a r  damage ru l e  would predict  

This is readi ly  seen by using equa- 

Nf,l of 15 925, 47 625, 44 000, e tc . ,  the  spec i f ic  

The experimental data show 

than would be ex- 
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s t r a i n  cycling with maraged 300 CVM steel .  

a l l  cases t o  be less than 730 cycles. 

tigue l i f e  would be taken up by the  crack propagation period according t o  the  

expressions thus far assumed for crack propagation and i n i t i a t i o n  i n  applying 

the  double l inear  damage rule.  

stage, t he  predictions by the double linear damage rule should coincide with 

those by the  conventional l inear  damage rule.  This was the  case f o r  t he  two 

conditions i n  which the  f i n a l  stress level  was  chosen so as t o  give a low value 

of l i f e  Nf,2 

However, when the  second stress l eve l  was chosen EO as t o  give a long l i f e ,  

Nf ,2  = 15 950 cycles, t he  predicted fatigue l i f e  by the  double l inear  damage 

rule w a s  less than t h a t  obtained experimentally. It is  apparent from figures 

5(b) and ( c )  t h a t  there  a re  deviations o f  t he  experimental data on both s ides  

of  t he  predictions made by the  double linear damage ru le  when the  expression 

14 Nof*6 was used t o  represent t h e  crack propagation stage. 

The i n i t i a l  l i f e  leve l  w a s  chosen i n  

For t h i s  case the  major par t  o f  the  fa- 

Since there is  essent ia l ly  no crack i n i t i a t i o n  

and the  experimental data agreed well with the  predictions. 

Thus far consideration has been given only t o  t h e  general case i n  which 

the  high stress o r  s t r a i n  ( f o r  s t r a i n  cycling tests)  w a s  applied first. 

Figure 5(d) i l l u s t r a t e s  the  opposite case. 

cycling tes t  the  predictions by the double l inear  damage ru le  show general 

agreement w i t h  t he  experimental data. Regardless of deviations of individual 

da ta  points from the predictions, however, it i s  evident from the  figure t h a t  

t he  order e f f ec t  of loading i s  accounted f o r  by the  double l inear  damage rule.  

Except for the  s ingle  axial s t r a in  

The r e su l t s  f o r  SAE 4130 steel are shown i n  figure 6. Part  (a)  of the  

figure deals  with tes ts  i n  which t h e  i n i t i a l  l i f e  l eve l  w a s  low and loads a t  

the  second stress l eve l  w e r e  chosen t o  give various l i f e  values up t o  203 000 

cycles. Part  (b )  of the  figure considers cases where the  i n i t i a l  l i f e  leve l  
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w a s  r e l a t ive ly  high. I n  both cases, however, the  order of load application 

w a s  t h a t  of high stress followed by low stress. I n  general the r e su l t s  ob- 

tained with 4130 steel are t h e  same as those obtained with the  maraged 300 CVM 

steel  f o r  similar test  conditions. 

dict ions by the  double l i nea r  ru le  using (N),  = 14 Nf 

data w a s  good, although deviations between predictions and data are c lear ly  

present i n  some cases. As was the  case f o r  t he  maraged 300 CVM steel, a more 

conservative prediction was always provided by the  double l i nea r  damage rule,  

assuming the  expression 14  as being representative o f  t he  crack propa- 

gation stage, than by the  conventional l inear  damage ru le  when the  high stress 

was applied first. 

For the  most part agreement between pre- 

and experimental 

Examination of  t he  Assumed Relation f o r  Crack Propagation (AN)f 

I n  view o f  t h e  deviations noted between predictions and experimental 

r e su l t s  c loser  examination o f  the  assumption t h a t  t he  crack propagation 

period (AN), may be expressed by t h e  re la t ion  1 4  Nf i s  c lear ly  i n  order. 

However, before considering the  poss ib i l i ty  of  improving t h i s  re la t ion  by 

changing the coeff ic ient  o r  exponent o r  both, attempts were made t o  deter-  

mine experimentally i f  the propagation period (AN), 

dependent upon fat igue l i f e  t o  specimen failure, Nf. 

such invest igat ion are shown i n  figure 7. Values of AN1 and AN2 were 

obtained from two stress leve l  tes ts  with SAE 4130 s o f t  steel i n  which 

w a s  indeed uniquely 

The re su l t s  o f  one 

w a s  485 cycles and N was 1 4  000 cycles using the  graphical method 
N f , l  f 7 2  
previously described and i l l u s t r a t e d  in f igure 1. These values are plot ted 

on figure 7 as  points B and A ' .  The values o f  DN1 and AN2 similar ly  

obtained from another set  of data i n  which the N f , l  w a s  14 000 cycles and 

w a s  203 000 cycles, are also plotted on figure 7 as points A and C. Nf ,2  

Obviously, points A' and A do not coincide as they would be expected t o  i f  
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AN were solely a function of Nf. Thus, whether a given stress (corres- 

ponding t o  a fixed l i f e )  is  used a s  the first o r  t he  second stress i n  a two 

stress l eve l  fatigue tes t  i s  clear ly  s ignif icant  and en t i r e ly  d i f fe ren t  results 

can be obtained. 

t h e  expression 14Nfoo6 

f a l l  on the  l i n e  w i t h  a slope of 0.6 when 

730 cycles. 

crack propagation by a universal re la t ion i n  terms of 

coeff ic ient  i s  14  o r  any other number, would produce some discrepancies. 

Other tests of the same type f o r  other combinations of stress were also made.  

These gave similar results t o  those shown i n  f igure 7. 

If the representation of the crack propagation period by 

were correct the points determined as above would 

Nf 

It must therefore be concluded t h a t  the concept of representing 

values were greater  than 

Nf, whether t he  

There are probably several  reasons why t h e  crack propagation period 

i s  not uniquely re la ted  t o  t o t a l  fatigue l i f e  (i. e. , l i f e  t o  failure of t he  

specimen). 

length f o r  crack i n i t i a t i o n  is  the  same at  all stress levels, and t h a t  

extending a crack at  a stress l e v e l  different  from tha t  at which it w a s  

i n i t i a t e d  i s  simply a continuation of the same process. 

mechanisms involved are not as readily explainable. What m a y  correspond 

t o  a crack length f o r  e f fec t ive  crack i n i t i a t i o n  at  one stress l e v e l  may 

not be s o  at another stress level. 

Reexamination is i n  order of the concept that the  effect ive crack 

Obviously the 

Another reason f o r  t he  discrepancies relates t o  the hardening and 

Upon changing t o  a new s t r a i n  softening charac te r i s t ics  of materials. 

level i n  a two s tep tes t ,  a material tha t  hardens o r  softens extensively 

w i l l  not  reach the same stress level  f o r  a given applied s txain as it would 

have, had tha t  same s t r a i n  been maintained throughout the test .  This is  

i l l u s t r a t e d  i n  f igures  8 and 9. Figure 8 shows the  stress response i n  
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a x i a l  s t r a i n  cycling at constant s t r a i n  amplitude f o r  maraged 300 CVM steel. 

Two t e s t s  were run at each of two values of t o t a l  s t ra in .  These were chosen 

t o  give l i v e s  on the order of 400 and 16 000 cycles. 

two t e s t s  run at each condition w a s  good and demonstrated the a b i l i t y  t o  

maintain and control approximately the same s t r a i n  l eve l  on the  fa t igue  

machines used. 

cycling two-strain l e v t l  t e s t s  f o r  maraged 300 CVM when t h e  higher of these 

two s t r a i n  levels w a s  applied first and the lower s t r a i n  l e v e l  subsequently 

applied. I t ' i s  evident t h a t  maraged 300 CIM i s  a strain-softening material. 

As continually increasing percentages of the  l i f e  were applied at the  higher 

s t r a i n  leve l ,  the  s t r e s s  required t o  maintain that s t r a i n  l e v e l  progressively 

decreased. 

and 75 percent of the  t o t a l  l i f e  a t  the  i n i t i a l  s t r a i n  followed i n  each case 

by operation t o  f a i l u r e  at  the lower s t r a i n  level .  

required t o  maintain the  lower leve l  of constant s t r a i n  i n  these two-step 

tests w a s  lower than that  required t o  maintain t h i s  l e v e l  of s t r a i n  i n  a 

s ingle  s t r a i n  l e v e l  t e s t .  

of t he  i n i t i a l  application of a high s t r a i n  level .  

would expect a longer l i f e  than would be predicted by the  double l i n e a r  

damage ru l e  using the expression 14  NfoS6 as representing the crack 

propagation stage. Figure 9 shows th i s  t o  be true.  The c i r c l e s  represent 

t h e  predPcted l i v e s  according t o  the double l i n e a r  damage ru l e  using 

{AN)f = 1 4  l$. 6; t he  crosses are the  experimentally determined l ives .  

I n  order t o  describe the cumulative fatigue damage process more 

Agreement between the  

Figure 9 i l l u s t r a t e s  t he  stress response i n  a x i a l  s t r a i n  

Also shown on the  f igure are the  r e s u l t s  of running f o r  5, 25, 

I n  each case the  s t r e s s  

T~Is ,  the material  w a s  oversoftened as a r e s u l t  

As a consequence one 

accurately methods must be sought t o  account f o r  the fac tors  discussed. 

This can be done while s t i l l  retaining the  double l i n e a r  damage ru l e  concept 
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as discussed i n  the next section. 

An Alternate Viewpoint of the Double Linear Damage Rule 

I n  the suggested a t e r n a t e  approach the  concept of crack i n i t i a t i o n  and 

propagation i n  the l i t e r a l  sense i s  al tered t o  represent two effect ive phases 

of the  fatigue process which might be designated as Phases I and 11. 

assumption of a l i nea r  damage rule f o r  each of these two phases, however, 

would be retained. 

inspection of the data  obtained i n  t h i s  investigation. This is  par t icu lar ly  

evident from some of the ro ta t ing  bending t e s t  results obtained w i t h  SAE 4130 

steel shown i n  f igure 6(a) .  

i l lus t ra te  how w e l l  two s t ra ight  l ines  originating at  ordinate and abscissa 

values of 1.0 f i t  t he  data. The coordinates of the intersect ion of these 

l i nes  (as defined i n  f i g .  1) determine the  values of No and AN used t o  

es tab l i sh  the  fatigue curves which represent phase I and phase I1 of the 

fa t igue  process. I n  keeping w i t h  th i s  change i n  concept t he  form of the 

rule would be different f o r  different materials and f o r  d i f fe ren t  extreme 

loads t ha t  might be applied i n  a t e s t .  

of t h i s  approach i s  s t i l l  needed; however, it would seem t o  take i n t o  account 

t he  complexities discussed i n  an approximate fashion. It i s  in te res t ing  t o  

note  that  the  use of a new fatigue curve d i f fe ren t  from that of the or ig ina l  

material i n  predicting remaining fat igue l i f e  after prestressing is  not 

inconsis tent  w i t h  other methods such as tha t  of Corten and Dolan (ref. 4) .  

I n  general  such previous 

curves are best determined from a consideration of the highest and lowest 

stress leve ls  of the applied spectrum. 

adopted i n  the following treatment. 

The 

That such an assumption is  reasonable may be seen by 

These resu l t s  are replot ted i n  f igure 10 t o  

Additional experimental ver i f ica t ion  

approaches have assumed tha t  the modified fa t igue  

This basic approach w i l l  a l so  be 

To apply the  double l i nea r  damage ru l e  i n  the l i g h t  of this revised 
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concept t o  any anticipated loading spectrum f o r  a given material a decision 

must f irst  be made as  t o  which are t h e  highest and lowest loads of importance. 

Stress levels  below the  fatigue l i m i t  w i l l  not be considered f o r  the  present. 

A series of two s t r e s s  l eve l  tests would be run i n  which the  highest stress 

leve l  would be applied first followed by operation t o  failure a t  t h e  lowest 

stress l eve l  of significance within the loading spectrum. This should br ing 

in to  play the  important variables such as any extremes of hardening o r  sof t -  

ening o f  the  material and extremes of crack length involved i n  i n i t i a t i n g  

t h e  propagating an effect ive crack. From such a series o f  tests it i s  pos- 

s i b l e  t o  determine fo r  t h a t  par t icular  combination of stress levels  t he  

values of No and LJY f o r  both stresses by using the graphical procedure 

f o r  applying the  double l inear  damage rule as previously described. These 

values may then be plot ted as shown i n  f igure  11 a t  the two stress leve ls  

and curves sketched between these points t h a t  are consistent with the  ap- 

pearance of  t he  or ig ina l  fatigue curve. 

t he  e f f e c t  of block o r  spectrum loading of any pattern t h a t  could also in-  

clude loadings between the  highest and lowest levels by the  double l inear  

damage rule.  The No and LJY curves would be used fo r  determing the  ef- 

fec t ive  values of phase I and phase I1 of the  fatigue process. 

would replace the  expression 

a formula. 

It would then be possible t o  analyze 

These curves 

(AN)f = 14 o r  any other var ia t ion of such 

One example o f  applying t h i s  procedure i s  given i n  Appendix B. 

Although a t  t h i s  ear ly  stage of the development o f  t h i s  approach, it 

seems most convenient t o  use a two-level t es t  as i l l u s t r a t ed  i n  figure 1 

t o  determine the effect ive values o f  Phases I and I1 fo r  given extremes of 

stress o r  s t r a i n  leve l  within a given loading spectrum, fur ther  consideration 

may revea l  b e t t e r  approaches f o r  par t icular  circumstances. For example, it 
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may be desirable t o  use a block loading i n  which t h e  highest and lowest 

s ignif icant  stresses i n  the  cycle are  mre typica l  of t he  spectrum o f  ser- 

vice loading f o r  establishing the point o f  effect ive t r ans i t i on  between the  

two phases (Point B i n  f i g .  l), ra ther  than merely following t h e  high stress 

cycles by continuous loading a t  the  lower stress. 

are involved ( the  points of  effect ive t rans i t ion  from Phase I t o  Phase I1 

f o r  each of the  two stress levels  when applied i n  conjunction with the  other)  

only two t e s t s  would be required t o  determine the two unknowns. 

proach is  fur ther  discussed i n  t h e  Concluding Remarks. 

Since only two unknowns 

This ap- 

Limited Experimental Verification of Alternate 

Viewpoint o f  Double Linear Damage Rule 

I n  order t o  provide an indication o f  the va l id i ty  o f  the  a l te rna te  view- 

point o f  the  double l i nea r  damage rule ,  a series of  repe t i t ive  a l te rna t ing  

two stress l eve l  block tests was  conducted. Such a test  may be considered 

as the  next s t ep  i n  complexity t o  the  single block two stress l eve l  t es t  which 

provided the bulk of t h e  data obtained i n  t h i s  investigation. The manner of  

conducting the t e s t  is f u l l y  described i n  Appendix C. Briefly,  a two stress 

l eve l  s ingle  block base w a s  selected. Equal f rac t iona l  portions of the num- 

be r  of cycles a t  each stress leve l  i n  the block were applied i n  a repe t i t ive  

fashion. The double Linear damage rule w a s  applied t o  predict  the  summation 

of t he  cycle r a t io s  required t o  cause f a i lu re  using experimentally determined 

curves representing phase I and phase I1 of the fat igue process. A numerical 

example i l l u s t r a t i n g  the  use of t h i s  method i n  making these predictions i s  

a l so  given i n  Appendix C. 

The experimental r e s u l t s  of these tests as  w e l l  as the  predictions a re  

shown i n  figure 12. The summations of the  cycle r a t i o s  a re  plot ted against  
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t he  f ract ions of  the  basic block considered. 

the summation of cycle r a t i o s  applied a t  the high stress; pa r t  (b)  with 

t h e  summation of cycle r a t i o s  at  t h e  low stress; and pa r t  ( c )  with t h e  

Part  (a)  of the figure deals w i t h  

t o t a l  summation. 

averages of 3 data points obtained at each f rac t ion  of t h e  block considered. 

The experimental data shown represent the ari thmetic 

I n  general, there  is reasonable agreement between t h e  predicted results and 

t h e  experimental data. 

associated with f a i l u r e  i n  e i the r  the high o r  low portions of the block 

The i r regular i ty  i n  t h e  predicted results i s  probably 

loading pattern. I n  all cases the  predictions by the  double l i n e a r  

damage rule are conservative. 

much additional experimental ver i f icat ion is  needed t o  fu l ly  es tab l i sh  the  

O f  course, it is important t o  note t h a t  

usefulness of t he  double l i n e a r  damage rule i n  predicting remaining fatigue 

l i f e  f o r  more complex loading spectra. 

i n  figure 1 2  serve more t o  i l l u s t r a t e  t h e  approach than t o  prove val idi ty  

of t he  method. 

The single series of tests contained 

CONCLUDING REMARKS 

It should be emphasized tha t  the  conclusions drawn are based upon 

only a p a r t i a l l y  completed study of the problem of cumulative damage. 

However, it can be concluded t h a t  while a double l i n e a r  damage ru l e  involving 

t h e  assumption t h a t  (&y)f = 1 4  gives better r e su l t s  than the conventional 

l i n e a r  damage ru l e  it i s  not adequate where crack i n i t i a t i o n  and propagation 

are expressed so le ly  i n  terms of t o t a l  l i fe .  Other representations of  

crack i n i t i a t i o n  and propagation might be more accurate, but  they must i n  

some way take i n t o  account t h e  hardening and softening character is t ics  of 

the mater ia l  and more par t icular ly  the effect  of the stress leve ls  involved. 

An a l t e rna te  viewpoint of the double l i n e a r  damage r u l e  i n  which the con- 

cept of crack i n i t i a t i o n  and propagation i n  the l i teral  sense is  altered t o  
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represent 

phases I and I1 which can be determined experimentally, appears t o  over- 

come some of the  l imitat ions of t he  or iginal  proposal. The form of  the 

r u l e  then becomes d i f f e ren t  fo r  different  materials and f o r  d i f fe ren t  

extreme loads that might be applied in  a t e s t .  

t h e  double l i n e a r  damage ru l e  when applied i n  t h i s  manner might be more 

applicable t o  the  study of complex structures.  

two effect ive phases of the fa t igue  process designated as 

It i s  conceivable t h a t  

More research i s  needed, however, t o  determine the  va l id i ty  of t he  

approach and t o  es tab l i sh  the most effect ive manner of determining the  

point of t r ans i t i on  between the  two phases of the  two extremes of t h e  

s t r e s s  leve ls  involved i n  the  t e s t .  For example t h e  type of block loading 

used as an i l l u s t r a t i o n  i n  Appendix C and figure 1 2  might i n  f a c t  be used 

f o r  t h e  determination of the  t rans i t ion  from phase I t o  phase I1 f o r  each 

of t h e  s t r e s s  leve ls  involved. 

determine t h i s  t r ans i t i on  f o r  each of t h e  two stress l eve l s  by the use 

of the two l i n e a r  damage rules, t h e  computations being s i m i l a r  t o  those 

shown i n  Appendix C. 

r e a l i s t i c  apportionment of the two s t r e s s  l eve l s  t o  represent more closely 

their  occurrence i n  the  particUa,r service his t roy involved. 

complex loadings s i m u l a t i n g  service loading could be envisioned, but 

these have not been pursued i n  v i e w  of the  preliminary nature of th i s  

program. However, it is  s ignif icant  t o  recognize that the concept involved 

i n  the use of a double l i n e a r  damage r u l e  

refinements. These could m a k e  t he  method more reaJ-ist ic w i t h  respect 

t o  t h e  type of service f o r  which l i f e  estimates would be made. 

The calculation need only be inverted t o  

In  this manner it may be possible t o  use a more 

Even more 

lends itself t o  fur ther  
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APPENDIX A. - APPLICATION OF DOUBLEl I;Im DAMAGE RULF: M 
A TGJD STIiESS LEVEL TEST USING TKE RELATION 

14 N f o a 6  To DEFINE TEE CRACK PROGATION PERIOD 

Given two s t r e s s  leve ls  1 and 2, a t  which t o t a l  l i f e  of the  or ig ina l  

and N respectively, and a pres t ress  cycle r a t i o  
f ,  2 

material  is  N 

nl/Nf,l; 

the  second stress level .  The values of  LwL. and 'm2 are first determined 

from equation (1). "he values of No,l a31d N0,2  can then be obtained by 

f ,  1 

it i s  desired t o  f ind  t h e  number of cycles t h a t  can be applied at 

subtraction using equation (2) .  N e x t ,  determine the r a t i o  No,l/Nf,l. For 

the  case where Nf,l > 730 cycles, i f  nl/Nf,l i s  equal t o  No,l/Nf,l, t h e  

crack i n i t i a t i o n  stage has j u s t  been completed and the  cycl ic  l i f e  rexmining 

a t  the  second stress l eve l  i s  exactly equal t o  t h a t  making up the  crack 

propagation period, o r  

n2 = N f , 2  - N0,2  = AN2 

If the  r a t i o  nl/Nf,l > N o , l / N f , l ,  the l i f e  remaining at the  second s t r e s s  

l e v e l  m a y  be expressed as 

n 2 = F -  

If the  r a t i o  nl/Nf,l < No,l/Nf,l , the l i f e  remaining at  the second s t r e s s  

l e v e l  may be expressed as 

For t h e  case where 

crack i n i t i a t i o n  period, but  ra ther  tha t  total l i f e  consis ts  only of crack 

Nf,l < 730 cycles it i s  assumed t h a t  there  is  no lengthy 

propagation. Then the  l i f e  remaining a t  the  second s t r e s s  l eve l  can be 

determined from the expression 
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I n  effect then f o r  the  la t ter  case t o t a l  l i f e  at  stress 2 i s  determined from 

the  l i n e a r  damage rule f o r  crack propagation only. 
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APPENDIX B. - APPLICATION OF DOUBIX LINEAR DAMAGE R W  USING 
EXPERlMENTAL DATA TO DEFINE PHASES I AND I1 OF FATIGUE PROCESS 

In  t h i s  appendix detai led examples w i l l  be given t o  show how the  phase I 

and phase I1 curves of f igure  11 were obtained and how these curves might pos- 

s i b l y  be used t o  predict  t h e  l i f e  of a three stress level fatigue t e s t .  

To define the  two phases of t he  fat igue process some 2 stress l eve l  t e s t s  

must first be conducted using the  highest and lowest s t resses  of importance 

i n  the  par t icu lar  loading spectrum under consideration. For purposes of t h i s  

i l l u s t r a t i o n  the material chosen w a s  maraged 300 CVM s t e e l  and the  two stresses 

chosen were 290 000 ps i  and 120 000 psi. From the  or ig ina l  fa t igue  curve of 

and N f , 2  f igure  11 f o r  this material (obtdned  on a Krouse machine) 

equal 1280 and 244 000 cycles respectively. 

of tests conducted by applying various cycle r a t i o s  nl/Nf,l at  the  high 

stress and operating t o  f a i l u r e  at the low s t r e s s ,  are p lo t ted  i n  f igure  13. 

S t ra ight  l i n e s  were then f i t t e d  through the  data. These were required t o  

or ig ina te  from cycle r a t i o  values of 1.0 on the  ordinate and abscissa. 

Nf,l 

The da ta  obtained from a series 

The 

coordinates of the  in te rsec t ion  point B are nl/Nf,l and n2/Nf,2 and have 

numerical values of 0.25 and 0.24. Since these r a t i o s  are equivalent t o  

% /N and AN2/Nf,2 as shown i n  f igure  1, the  values of N ~ , ~ ,  

and N0,2 and ANz were calculated to  be 320, 960, 185 000 and 59 000 cycles 

respectively.  

%,l f,l 

These values were then plot ted at  t h e i r  corresponding s t resses  

as shown i n  f igure 11 and were connected by curves which approximate the  shape 

of t he  o r ig ina l  fa t igue curve. These curves m a y  then be used i n  separate 

l i n e a r  summations f o r  phase I and phase 11 of the  fa t igue  process. 

As a numerical example of the method of applying the  double l i n e a r  

damage rule  using these phase I and phase I1 curves consider a three  s t r e s s  

level test i n  which the highest and l o w e s t  s t resses  are 290 000 and 120 000 psi.  
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It is  required t o  predict  the  remaining l i f e  at a t h i r d  stress leve l ,  

200,000 psi ,  a f t e r  200 and 40,000 cycles respectively have been applied 

a t  the highest  and lowest stresses.  Values of NOy3 md 6 N 3  can be 

obtained from the  phase I and phase I1 curves of figure 11. 

equals 5900 md LSN3 equals 6100. 

results i n  a r a t i o  of 

Thus, No,3 

The application of 200 cycles at stress 1 

nl/No,l = 0.63 c 1 

indicating t h a t  phase I has not been completed and t h a t  it is  continued 

at  the  second s t r e s s  level.  The application of 40 000 cycles a t  the  second 

stress results i n  a r a t i o  of 

2 n - = 0.21 
No, 2 

Summing up the  cycle r a t io s  applied a t  stresses 1 and 2 results i n  

n 1 n - +2 = 0.63 + 0.21 = 0.84 < 1 
N0,l No,2 

The portion, x, of the  number of  cycles applied at stress 3 needed t o  

complete phase I is  from equation ( 3 ) ,  

or  x = 885 cycles 

The portion of t he  number of cycles applied a t  stress 2, needed t o  complete 

phase I1 is, from equation (4), 

Y = 1 o r  y = 6100 cycles 
6100 

Then, the total number of cycles remaining at the t h i r d  stress l e v e l  is  equal 

t o  

x + y = 885 + 6100 = 6985 cycles. 
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APPENDIX C. - APPLICATION OF DOUBLE LINEAR DAMAGE 
RUI;E TO ALTERNATING TWO STRESS LJPTEL TEST I N  WHICH EXPERIMENTAL 

I DATA ARE USED To DEFIXE PHASE I AND PHASE I1 OF FATIGUE PROCESS 

Alternating two stress leve l  t e s t s  were conducted as  follows: F i r s t ,  two  

stress leve l  tests were conducted at various cycle ratios,nl/Nf,l 

s t ress ,  190 000 psi ,  and the  remaining cyclic l i f e  r a t i o s  

mined a t  a second stress, 110 000 psi. 

8000 cycles. A t  110 000 psi ,  Nf,2 was found t o  be 625 000 cycles. These Nf 

values were obtained with specimens from a d i f fe ren t  heat o f  maraged 300 (NM 

a t  a high 

n2/Nf,2 were deter-  

w a s  found t o  be 

~ 

I 

A t  190 000 ps i ,  Nf,l 

~ 

s t e e l  than the  data previously described i n  t h i s  paper f o r  t h i s  material. 

r e s u l t s  o f  the t e s t s  i n  which d i f fe ren t  cycle r a t i o s  were applied a t  190 000 

The 

I p s i  were plot ted as  shown i n  figure 14. B e s t  v i sua l  f i t  s t r a igh t  l ines  were 

drawn through the  data, again meeting the requirement t h a t  they or iginate  from 

a value of cycle r a t i o  of  1.0 on the ordinate and abscissa. 

nates of t he  intersect ion point B, and the values of Nf,l and Nf,2, the  

phase I and phase I1 parameters were determined. Thus, N o , l  equaled 1300 

cycles, m1 6700 cycles, No,2 537 000 cycles, and AN2 88 000 cycles. Sev- 

e ra1  a l t e rna t ing  two s t r e s s  l eve l  block tests were than specif ied such t h a t  

various f rac t ions  of 1300 cycles were applied a t  t he  high stress of 190 000 psi 

From the coordi- 

and iden t i ca l  f rac t ions  o f  88 000 cycles were applied a t  the  low stress. 

The following numerical example i l l u s t r a t e s the  manner of applying the  

double l i nea r  damage ru l e  t o  an al ternat ing two stress l eve l  test. The example 

considers t he  case of an a l te rna t ing  block tes t  i n  which the  a l te rna t ing  o r  re -  
~ 

I peated block i s  taken t o  be one half  o f t h e  number o f  cycles a t  each stress leve l  

i n  the  base block. 

shown diagrammatically i n  f igure 15. 

Both the  base block and the  a l te rna t ing  block example a re  

The base block fo r  t h i s  example (as 

w e l l  as a l l  t e s t s  o f  f igure 12)  i s  defined as  consisting o f  1300 cycles a t  the  
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first  s t r e s s  and 88 000 cycles a t  the  second s t ress .  

ber  of cycles t o  complete phase I apply equation (3).  

To determine the  num- 
- , 

Since 

- 650 44,000 2 ~ 

1300 -I- 537,000 

it is  apparent t h a t  phase I has not been completed i n  the  first loading 

block. 

t h e  second loading block, again apply equation (3) 

To determine if phase I i s  completed i n  the  high stress portion of 

X +-=1 - 650 + 44,000 
1300 537,000 1300 

o r  x = 543 cycles. -Phase I has %hen 'been completed.. Nextb 

determine t h e  number of cycles needed t o  complete phase 11. 

t o  determine first whether phase I1 is completed i n  the  second loading block. 

This gives 

Apply equation (4) 

650 - 543 44,000 < 
6700 + 88,000 

indicat ing t h a t  phase I1 has not been completed i n  block 2. Therefore, 

determine i f  phase I1 is completed i n  t he  high s t r e s s  portion of block 3. 

Thus 

650 - 543 44,000 + y 
6700 + 88,000 6700 - 

and 

y = 3460 

Since y > 650 phase I1 has not been completed i n  the  high stress portion 

of block 3 and the next s tep  i s  t o  determine if  it is  completed i n  the  low 

stress portion of this block. Thus 

650 - 543 44,000 u650 z +- 6700 -I- 88,000 6700 -I- 88,000 = I 
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and z = 34 OOO. 

failure OCCUTS during the low stress portion of block 3. 

of cycle r k t i o s  f o r  this example then is 

Since z < 44 000 cycles, phase I1 has been completed and 

The t o t a l  summation 

N f  

650 44,000 650 + 44,000 650 34,000 = o.44 +- + -+  n - = - +  
Nf 8000 625,000 8000 625,000 8000 625,000 

I n  t h e  same manner other apportionments of t he  cycles sus tdned  at t h e  

intersect ion point of a two s t ress- level  test  (analogous t o  point B of 

figure 1) can be computed and the expected number of cycles t o  failure pre- 

dicted f o r  a l ternat ing block loading applications. 
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TABLE I- - MATERIAL DESCIIIFTION 

1700' F, 1 /2  hr i n  s a t ,  
W . Q . ;  1200° F, 1/2 hr 
i n  s d t ,  A.C. 

1600' F, 1/2 hr i n  s a l t ,  
W-Q; 750' F, 1 hr i n  
s a l t ,  A.C. 

Material 

4130 
( so f t )  

4130 
(hard) 

300 CVM 

R, 25-27 

R, 39-40 

Nominal Composition 

C 0.30, Mn 0.50, P 0.040, 
S 0.040, S i  0.28, 
C r  0.95, Mo 0.20, 
Fe remsinder 

Same as above. 2 

C 0.03 max, S i  0.10 max, 

N i  18.50, Co 9-00, Mo 
4.80,LL 0.10, T i  0.60, 
B 0.003, Zr 0.02 added 
Ca 0.05 added 

Mn 0.10 max, s 0.010 
max, P 0.010 max, 

Condition I Hardness 
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TAEU3 II. - MECHANICAL PROPEKCIES OF TEST MATERIALS 

Fracture 
strength, 

ks i 

245 

302 

380 

R.A. , 
percent 

67; 3 

54.7 

50.7 

Mod. of 
elas:, 
psi  

32X106 

29 
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